Имитационное моделирование инвестиционных рисков

Анализ инвестиционного проекта в скачать Любая инвестиция нуждается в тщательных расчетах. Иначе инвестор рискует потерять вложенные средства. На первый взгляд, бизнес прибыльный и привлекательный для инвестирования. Но это только первое впечатление. Необходим скрупулезный анализ инвестиционного проекта. И сделать это можно самостоятельно с помощью , без привлечения дорогостоящих специалистов и экспертов по управлению инвестиционными портфелями. Расчет инвестиционного проекта в Инвестор вкладывает деньги в готовое предприятие. Тогда ему необходимо оценить эффективность работы доходность, надежность. Либо в новое дело — все расчеты проводятся на основе данных, полученных в ходе изучения рынка инфраструктуры, доходов населения, уровня инфляции и т.

Имитационное моделирование инвестиционных рисков. - презентация

Начальные инвестиции - 0 Первым этапом анализа согласно сформулированному выше алгоритму является определение зависимости результирующего показателя от исходных. При этом в качестве результирующего показателя обычно выступает один из критериев эффективности: Предположим, что используемым критерием является чистая современная стоимость проекта : - величина чистого потока платежей в периоде . По условиям примера, значения нормы дисконта и первоначального объема инвестиций 0 известны и считаются постоянными в течение срока реализации проекта табл.

В целях упрощения будем полагать, что генерируемый проектом поток платежей имеет вид аннуитета.

-метод Монте-Карло (имитационное моделирование) и др. алгоритмы количественного анализа рисков инвестиционных проектов и рассмотрено их .. чувствительности, как это продемонстрировано в следующем примере .

Расчет одного прогнозного варианта сценария реализации проекта Расчет большого количества случайных вариантов сценариев реализации проекта Результат Единственное значение интегрального показателя эффективности проекта Распределение вероятностей интегрального показателя эффективности проекта Уже указывалось, что метод Монте-Карло, являясь одним из наиболее сложных методов количественного анализа рисков, преодолевает недостатки анализа чувствительности и анализа сценариев.

Оба этих метода показывают воздействие определенного изменения в величине одной или нескольких переменных на показатель эффективности проекта например, . Основные недостатки этих методов и способы их устранения с помощью метода Монте-Карло указаны в табл. Схема реализации метода Монте-Карло в инвестиционных расчетах В общем случае методом Монте-Карло называют численный метод решения математических задач при помощи моделирования случайных величин.

Теоретическое описание метода появилось в г. Создателями данного метода считают американских математиков Дж. Название метопу дал известный своими казино город Монте-Карло в княжестве Монако, так как именно рулетка является простейшим механическим прибором по реализации процесса получения случайных чисел, используемого в данном математическом методе. Область применения метода Монте-Карло достаточно широка. В качестве примеров можно привести расчет систем массового обслуживания, расчет качества и надежности изделий, вычисление определенного интеграла и др.

Схема использования метода Монте-Карло в количественном анализе рисков такова: Переменными считаются случайные составляющие проекта, параметрами — те составляющие проекта, значения которых предполагаются детерминированными. Математическая модель пересчитывается при каждом новом имитационном эксперименте, в течение которого значения основных неопределенных переменных выбираются случайным образом на основе генерирования случайных чисел.

Результаты всех имитационных экспериментов объединяются в выборку и анализируются с помощью статистических методов с целью получения распределения вероятностей результирующего показателя и расчета основных измерителей риска проекта. Применение метода Монте-Карло в инвестиционных расчетах требует создания специального программного обеспечения.

Процесс анализа риска Первая стадия в процессе анализа риска - это создание прогнозной модели. Такая модель определяет математические отношения между числовыми переменными, которые относятся к прогнозу выбранного финансового показателя. В качестве базовой модели для анализа инвестиционного риска обычно используется модель расчета показателя : Использование этой формулы в анализе риска сопряжено с некоторыми трудностями. Они заключаются в том, что при генерировании случайных чисел, годовой денежный поток выступает как некое случайное число, подчиняющееся определенному закону распределения.

Имитационное моделирование диверсификации поставщиков, проведенное для примера ИП, показало, управления рисками инвестиционных проектов .

Введение к работе Актуальность темы В настоящее время российская экономика испытывает существенный дефицит инвестиций. Именно увеличение инвестиционной активности может стать стимулирующим фактором, позволяющим обеспечить стабильный экономический рост. Помимо макроэкономических факторов, определяющих инвестиционный климат в стране, при принятии решений о реализации отдельного инвестиционного проекта наибольшее значение имеет эффективность инвестиций, то есть степень соответствия результатов поставленным целям.

Микроэкономический подход к решению задачи привлечения инвестиций - важное направление исследований. В значительном количестве научных работ на основе стандартных подходов проектного анализа формируется методология разработки бизнес-плана инвестиционного проекта в соответствии с международными стандартами в условиях российской экономической действительности [6,20, 31, 38,42,47, 48, 50].

При большой роли фактора неопределенности, а именно, неполноты и неточности информации об условиях реализации ИП, требуется изменение стандартных подходов проектного анализа к оценке проекта. В основном, это связано с наличием различного рода рисков, другими словами, с возможностями возникновения неблагоприятных последствий при определенных условиях осуществления ИП. Степень влияния рисков характеризует рискованность неустойчивость проекта как его неэффективность при определенных возможных условиях его реализации.

Таким образом, учет фактора неопределенности, различных рисков и поиск эффективных методов управления рисками, позволяющих путем реализации специальных антирисковых мероприятий добиться уменьшения негативного эффекта случайных вариаций, становятся в российской экономической действительности необходимыми компонентами процесса разработки и экспертизы ИП. Очевидно, что для обоснования привлекательности проекта и обеспечения его успешной реализации необходимо проведение качественного и количественного анализа рисков проекта, разработка антирисковых мероприятий, оценка связанных с ними затрат и эффекта от их реализации, проведение расчетов, демонстрирующих устойчивость проекта к изменениям экономической ситуации.

Для определения эффекта конкретного метода управления рисками необходимо наличие инструментов его количественной оценки. Тогда моделирование управления рисками позволит сравнить эффективности методов и выбрать оптимальный вариант, таким образом, уже на предынвестиционной стадии обеспечивая требуемое снижение рискованности проекта при ограниченных затратах на проведение антирисковых мероприятий.

Ваш -адрес н.

Единственное отличие подобного эксперимента от реального состоит в том, что он проводится с моделью системы, а не с самой системой. Проведение реальных экспериментов с экономическими системами по крайней мере неразумно, требует значительных затрат и вряд ли осуществимо на практике. Таким образом, имитация - единственный способ исследования систем без осуществления реальных экспериментов.

В подобных случаях отсутствующие фактические данные заменяются величинами, полученными в процессе имитационного эксперимента то есть сгенерированными компьютером. Такие модели называют стохастическими.

В ходе экономической оценки инвестиционного проекта используется ставка На примере Бобровского участка были проведены расчеты NPV с Имитационное моделирование – метод исследования, при котором изучаемая.

Юршевич Рига В экономической деятельности руководитель любого уровня постоянно сталкивается с необходимостью принимать решения в ситуациях, сопряженных с риском. Применяемые сегодня различные аналитические модели и методы для анализа риска содержат в себе наряду с достоинствами и ряд недостатков: Другим методом оценки рисков в бизнес-процессах может быть имитационное моделирование, которое позволяет максимально приблизить модель к реальной ситуации.

Сегодня этот подход становится одним из наиболее приоритетных при оценке рисков в бизнес-процессах. Но при использовании имитационной модели не исключается необходимость аналитических моделей. Они являются частью направленного эксперимента с моделью. В начале производится аналитическое моделирование, результаты которого служат ориентиром при построении в дальнейшем имитационной модели и могут использоваться при валидации модели.

Количественная оценка рисков инвестиционных проектов

Работы Методические указания по выполнению контрольной В мировой практике финансового менеджмента используются различные методы анализа рисков инвестиционных проектов ИП. Практическое применение данного метода продемонстрировало широкие возможности его использования в инвестиционном проектировании, особенно в условиях неопределённости и риска. Данный метод особенно удобен для практического применения тем, что удачно сочетается с другими экономико-статистическими методами, а также с теорией игр и другими методами исследования операций.

Практическое применение авторами данного метода показало, что зачастую он даёт более оптимистичные оценки, чем другие методы, например анализ сценариев, что, очевидно обусловлено перебором промежуточных вариантов. Многообразие ситуаций неопределённости делает возможным применение любого из описанных методов в качестве инструмента анализа рисков, однако, по мнению авторов, наиболее перспективными для практического использования являются методы сценарного анализа и имитационного моделирования, которые могут быть дополнены или интегрированы в другие методики.

Возможность его применения для анализа проекта связана именно с наличием вероятностного имитационного моделирования (по шкале: возможно, Очевидно, что данные примеры являются своего рода предельными для реальных инвестиционных расчетов по инновационным проектам в том.

Риск-анализ инвестиционного проекта методом сценариев 6. Анализ рисков с построением дерева решений 1. Общие понятия неопределенности и риска Инновационная деятельность обладает высокой степенью неопределенности. Очень трудно предвидеть, какая инновация будет иметь успех на рынке, а какая не будет пользоваться спросом. Поэтому инновационным предприятиям в первую очередь следует тщательно анализировать инновационные проекты для того, чтобы избежать возможных ошибок на самой ранней стадии — стадии отбора проектов.

Под неопределенностью будем понимать состояние неоднозначности развития определенных событий в будущем, состоянии нашего незнания и невозможности точного предсказания основных величин и показателей развития деятельности предприятия и в том числе реализации инвестиционного проекта. Неопределенность - это объективное явление, которое с одной стороны является средой любой предпринимательской деятельности, с другой стороны - это причина постоянной головной боли любого предпринимателя.

2.5. Моделирование рисков

Величина ожидаемой меньше ,96 против , Однако величина стандартного отклонения также существенно ниже ,31 против ,62 и не превышает значения . Коэффициент вариации меньше 1, таким образом, риск данного проекта в целом ниже среднего риска инвестиционного портфеля фирмы. Еще больший оптимизм внушают результаты анализа распределения чистых поступлений от проекта . Таким образом, с вероятностью больше 0,9 можно утверждать, что поступления от проекта будут положительными величинами.

Финансовое моделирование инвестиционных проектов, октября Знакомство с проектом, используемым в качестве сквозного примера в Использование модели в анализе рисков проекта, имитационное моделирование.

Будем также исходить из предположения о независимости ключевых переменных , , , а результирующий показатель , исходя из центральной предельной теоремы, аппроксимируем с помощью нормального закона распределения. Как следует из названия, она позволяет получить случайное число из заданного интервала. При этом тип возвращаемого числа вещественное или целое зависит от типа заданных аргументов. Рабочий лист с результатами, проведенного эксперимента представлен на рис.

Величина ожидаемой составляет , долл. Можно сказать, что стандартное отклонение не превышает ожидаемого значения, но достаточно велико, что заставляет задуматься о рискованности проекта. Общее число отрицательных значений в выборке составляет 36 из Несколько больший оптимизм внушают результаты анализа распределения чистых поступлений от проекта . Результаты имитации с помощью встроенной функции СЛУЧМЕЖДУ Сумма всех отрицательных значений в полученной генеральной совокупности ,3 может быть интерпретирована как чистая стоимость неопределенности для инвестора в случае принятия проекта.

Аналогично сумма всех положительных значений может трактоваться как чистая стоимость неопределенности для инвестора в случае отклонения проекта. Несмотря на всю условность этих показателей, в целом они представляют собой индикаторы целесообразности при проведении дальнейшего анализа.

Финансовая оценка инвестиционного проекта